Drug Formulary Table of Contents

<table>
<thead>
<tr>
<th>Document</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>DF 1</td>
</tr>
<tr>
<td>Adenosine</td>
<td>DF 2</td>
</tr>
<tr>
<td>Albuterol</td>
<td>DF 3</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>DF 4</td>
</tr>
<tr>
<td>Amyl Nitrite</td>
<td>DF 5</td>
</tr>
<tr>
<td>Aspirin</td>
<td>DF 6</td>
</tr>
<tr>
<td>Atropine Sulfate</td>
<td>DF 7</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>DF 8</td>
</tr>
<tr>
<td>Calcium Gluconate</td>
<td>DF 9</td>
</tr>
<tr>
<td>Dextrose 50%</td>
<td>DF 10</td>
</tr>
<tr>
<td>Diazepam</td>
<td>DF 11</td>
</tr>
<tr>
<td>Diltiazem</td>
<td>DF 12</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>DF 13</td>
</tr>
<tr>
<td>Dopamine</td>
<td>DF 14</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>DF 15</td>
</tr>
<tr>
<td>Etomidate</td>
<td>DF 16</td>
</tr>
<tr>
<td>Fentanyl Citrate</td>
<td>DF 17</td>
</tr>
<tr>
<td>Furosemide</td>
<td>DF 18</td>
</tr>
<tr>
<td>Glucagon</td>
<td>DF 19</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>DF 20</td>
</tr>
<tr>
<td>Ipatropium Bromide</td>
<td>DF 21</td>
</tr>
<tr>
<td>Ketamine</td>
<td>DF 22</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>DF 23</td>
</tr>
<tr>
<td>Magnesium Sulfate</td>
<td>DF 24</td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>DF 25</td>
</tr>
<tr>
<td>Midazolam</td>
<td>DF 26</td>
</tr>
<tr>
<td>Morphine Sulfate</td>
<td>DF 27</td>
</tr>
<tr>
<td>Naloxone</td>
<td>DF 28</td>
</tr>
<tr>
<td>Nitroglycerine</td>
<td>DF 29</td>
</tr>
<tr>
<td>Ondansetron</td>
<td>DF 30</td>
</tr>
<tr>
<td>Oral Glucose/Dextrose 40%</td>
<td>DF 31</td>
</tr>
<tr>
<td>Otrivin (Afrin)</td>
<td>DF 32</td>
</tr>
<tr>
<td>Oxygen</td>
<td>DF 33</td>
</tr>
<tr>
<td>Rocuronium Bromide</td>
<td>DF 34</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>DF 35</td>
</tr>
<tr>
<td>Sodium Nitrite</td>
<td>DF 36</td>
</tr>
<tr>
<td>Sodium Thiosulfate</td>
<td>DF 37</td>
</tr>
<tr>
<td>Tetracaine</td>
<td>DF 38</td>
</tr>
<tr>
<td>Vecuronium Bromide</td>
<td>DF 39</td>
</tr>
<tr>
<td>Xylocaine Gel</td>
<td>DF 40</td>
</tr>
</tbody>
</table>
Acetaminophen (APAP)

Class Analgesic, Antipyretic.

Action Equivalent to aspirin in both analgesic and antipyretic effects. Unlike aspirin, acetaminophen has little effect on platelet function, no effect on homeostasis, and is not known to produce gastric bleeding. Acetaminophen is not an NSAID, as it has no anti-inflammatory properties. Its function was largely a mystery until the early 1990’s when it was found that it acted on a variant of cyclooxygenase called COX3 that is only expressed in the central nervous system. Because it does not work on COX1 and COX2 (like ASA) it does not cause the downstream effects on platelets or the immune system.

Pharmacokinetics Absorption is rapid, peak 1-2h, duration 3-4h, ½ life 1-3h. APAP is processed in the Liver.

Contraindications Use in caution with children afflicted with arthritic or rheumatoid conditions. Use in caution with known thrombocytopenia.

Adverse effects N/V, abdominal pain,

Indications Fever with or without seizures or Pain.

Dosing Per Protocols
Adenosine

Class Antidysrhythmic

Action Slows AV node conduction, interrupts reentry pathways. Adenosine works in a variety of receptors grouped into a group called P1 receptors. The true mechanism is somewhat unclear. Adenosine works through the activation of cAMP and coupled G-proteins to cause its cardiac effects.

Pharmacokinetics Immediate onset and peak, half-life 10s.

Contraindications Known hypersensitivity. Sick Sinus Syndrome. Second or third degree AV block. Use with caution in patients with severe asthma.

Adverse effects Flushing, CP, HA, N/V, hypotension

Indications...................... Symptomatic (poor perfusion) narrow complex tachycardia w/ pulse

Dosing Per Protocols
Albuterol

Class Sympathomimetic Bronchodilator

Pharmacokinetics Onset 5-15m, peak 1-1.5h, duration 3-6h, half-life 3h.

Contraindications Known hypersensitivity.

Adverse effects Tachycardia, palpitations, peripheral vasodilation, tremors, HA, sore throat, dry mouth, PVCs, N/V.

Indications Wheezing due to bronchospasm

Dosing Per Protocols
Amiodarone

Class..............................Antidysrhythmic

Action............................Prolongs the duration of the action potential and refractory period of all Cardiac fibers. Depresses the Phase 0 slope by causing a sodium blockade. Causes a Beta block as well as a weak calcium channel blockade. Therefore it decreases the SA nodes rate of firing, suppresses automaticity, interrupts reentrant pathways and prolongs PR, QRS and QT intervals. Relaxes vascular smooth muscle, decreases peripheral vascular resistance, and increases coronary contractility.

PharmacokineticsRapid onset, serum concentrations drop to 10% w/in 30-45 minutes.

ContraindicationsCardiogenic shock, bradycardia, second/third degree block

Adverse effectsVasodilation (usually not associated with decreased cardiac output secondary to the negative inotropic effects), hypotension, bradycardia, AV block, increased QT interval, V-Tach

Indications.....................Ventricular Arrhythmias or Wide Complex Tachycardia with or without a pulse

DosingPer Protocols
Amyl Nitrite

Class .. Vasodilator

Action The mechanism of action may be inducing low levels of methemoglobinemia. Another postulated mechanism is by acting through nitric oxide synthetase. Airway management and provision of supplemental oxygen increase efficacy.

Pharmacokinetics Amyl nitrite vapours are absorbed rapidly through the pulmonary alveoli, manifesting therapeutic effects within one minute after inhalation. The drug is metabolised rapidly, probably by hydrolytic denitrification; approximately one third of the inhaled amyl nitrite is excreted in the urine.

Contraindications Relative Contraindications:
- Significant hypotension
- Methemoglobinemia >40%
- Carbon monoxide poisoning

Absolute Contraindication:
- Known Allergy to Medication

Adverse effects Headache, Hypotension, Reflex tachycardia, Hypoperfusion (shock)

Indications Patients with significant cyanide, cyanogenic compound, or sulfide poisoning.

Dosing Per Protocols
Aspirin

Class Analgesic, Antipyretic, NSAID, platelet inhibitor

Action Inhibits the formation of prostaglandins associated with pain, fever, and inflammation. Inhibits platelet aggregation by acetylation of cyclooxygenase permanently disabling it so that it cannot synthesize prostaglandins and Thromboxanes. Since Thromboxane A2 is important in clotting its absence does not allow blood to clot effectively.

Pharmacokinetics Onset 5-30m, peak in 15m-2h, duration is 1-4h.

Contraindications Allergy, ulcer, GI bleeding

Precaution Patients with known ASA or NSAIDs sensitive Asthma (defer to OLMC)

Adverse effects N/V, diarrhea, heartburn, GI bleeding

Indications Cardiac type Chest Pain

Dosing Per Protocol
Atropine Sulfate

Class Parasympatholytic
Action Competitive antagonist that selectively blocks all muscarinic responses to Ach. Blocks vagal impulses, thereby increasing SA node discharge, thereby enhancing AV conduction and cardiac output. Potent anti-secretory effects caused by the blocking of acetylcholine at the muscarinic site. Atropine is also useful in the treatment of the symptoms associated with nerve agent poisoning.

Pharmacokinetics Rapid onset, peak in 2-4m IV, half-life 2-3h.

Contraindications A-Fib, A-Flutter, second degree type II or third degree block. Tachycardia, glaucoma. Use with caution in suspected AMI.

Adverse effects Pupil dilation, tachycardia, V-Tach, V-Fib, HA, dry mouth

Indications.................... Asystole/Agonal/PEA, Bradycardia and Organophosphate poisoning

Dosing Per Protocols
Calcium Chloride

Class Electrolyte

Action Calcium binds to troponin that connects tropomyosin to actin covering myosins binding site to actin. While this binding site is covered, muscular contraction cannot occur. The exposure of this binding site in the presence of ATP (chemical energy) allows the muscle to contract. Enhancing muscular contraction. Contraction in the heart is therefore increased as is smooth muscles (vascular) contraction. Calcium in its ionic (dissolved) state carries a very positive charge. This charge causes the membrane to be stable if the calcium is too low neurons and cardiac cells have a decreased threshold for activation resulting in tetany.

Pharmacokinetics Onset and peak are immediate

Contraindications V-Fib, renal/cardiac insufficiency, patients taking digatails.

Adverse effects Tingling sensation in IV site, hypotension, syncope, cardiac arrest.

Indications Calcium Channel Overdose, Beta Blocker Overdose, Hydrofluoric Acid Exposure, Hyperkalemia

Dosing Per Protocols
Calcium Gluconate

Class Electrolyte

Action Calcium binds to troponin that connects tropomyosin to actin covering myosins binding site to actin. While this binding site is covered, muscular contraction cannot occur. The exposure of this binding site in the presence of ATP (chemical energy) allows the muscle to contract. Enhancing muscular contraction. Contraction in the heart is therefore increased as is smooth muscles (vascular) contraction. Calcium in its ionic (dissolved) state carries a very positive charge. This charge causes the membrane to be stable if the calcium is too low neurons and cardiac cells have a decreased threshold for activation resulting in tetany. Calcium Gluconate is less potent and less irritating to veins than Calcium Chloride.

Pharmacokinetics Onset and peak are immediate

Contraindications V-Fib, renal/cardiac insufficiency, patients taking digalalis.

Adverse effects Tingling sensation in IV site, hypotension, syncope, cardiac arrest.

Indications Calcium Channel Overdose, Beta Blocker Overdose, Hydrofluoric Acid Exposure, Hyperkalemia

Dosing Per Protocols
Dextrose 50%

Class Carbohydrate. Dextrose (aka. glucose) is one of the basic building blocks of all sugars. Glucose is a monomer and is therefore readily processed in the blood. Through glycolysis glucose is turned into pyruvate giving off a small amount of chemical energy (ATP). Pyruvate is further processed through the Citric Acid Cycle (Kreb’s Cycle) yielding even more energy (GTP, FADH2 and NADH) and CO2. The GTP, FADH2 and NADH are then converted into a large amount of ATP through the use of a specialized cell membrane and the ability of Oxygen to receive extra protons and carbon to form water and CO2. Insulin turns excess glucose into glycogen when blood sugars are high. Glucose is a large molecule that forms a ring, this structure is incapable of being absorbed into a cell without a mediator (insulin) and therefore increases damage to epithelium as it floats through the blood stream. It also causes an osmotic pressure as concentrations vary across membranes. The pressure is less with D5 and D10 therefore they are used in pediatrics.

Action Principal form of glucose used by the body

Pharmacokinetics Rapid absorption in bloodstream

Contraindications Use with caution in patients with suspected increased ICP.

Adverse effects Patients may complain of warmth, pain, or burning at the injection site. Extravasation causes necrosis.

Indications Cardiac Arrest or altered mentation with Glucose level < 50 or Newly Born with heart rate < 60

Dosing Per Protocols
Diazepam

Class Anticonvulsant/sedative, benzodiazepine

Action Enhances the action of GABA. GABA is an inhibitory neurotransmitter in the brain (in adults, the glutamate pathway may not be well developed in children and GABA may excite in this population). Glutamate is the excitatory neurotransmitter. By enhancing the GABA effect the brain typically slows transmissions and suppresses the spread of seizure activity throughout the brain. It does not appear to abolish the abnormal focus. Potent skeletal muscle relaxant.

Pharmacokinetics Onset 1-5m IV, 15-30m IM. Peak 15m IV, 30m IM. ½ life 20-50m.

Contraindications Coma, hypotension.

Adverse effects Respiratory depression (especially when pushed fast), lightheadedness, ataxia, neural depression, confusion, slurred speech, amnesia.

Indications Seizures

Dosing Per Protocols
Diltiazem

Class .. Diltiazem hydrochloride is a calcium ion cellular influx inhibitor (slow channel blocker or calcium antagonist).

Action .. Calcium channel blockers are drugs that block the entry of calcium into the muscle cells of the heart and arteries. The entry of calcium is critical for the conduction of the electrical signal that passes from muscle cell to muscle cell of the heart, and signals the cells to contract. It also is necessary in order for the muscle cells to contract and thereby pump blood. In the arteries, the entry of calcium into muscle cells causes contraction of the cells and thereby dilates (widens) the arteries. Thus, by blocking the entry of calcium, calcium channel blockers reduce electrical conduction within the heart, decrease the force of contraction (work) of the muscle cells, and dilate arteries. Dilation of the arteries reduces blood pressure and thereby the effort the heart must exert to pump blood. Combined with decreases in the force of contraction, this leads to a reduced requirement for oxygen by the heart. Dilation of the arteries provides more oxygen-carrying blood to the heart. The combination of reduced demand for oxygen and increased delivery of oxygen prevents angina or heart pain. (Angina occurs when the heart is not getting enough oxygen relative to the amount of work it is doing.) In addition, calcium channel blockers slow electrical conduction through the heart and thereby correct abnormal rapid heartbeats.

Pharmacokinetics Diltiazem hydrochloride is extensively metabolized by the liver and excreted by the kidneys and in bile.

Contraindications Diltiazem is contraindicated in (1) patients with sick sinus syndrome except in the presence of a functioning ventricular pacemaker, (2) patients with second- or third-degree AV block except in the presence of a functioning ventricular pacemaker, (3) patients with hypotension (less than 90 mm Hg systolic), (4) patients who have demonstrated hypersensitivity to the drug, and (5) patients with acute myocardial infarction and pulmonary congestion.

Precaution Cardiac Conduction: Diltiazem prolongs AV node refractory periods without significantly prolonging sinus node recovery time, except in patients with sick sinus syndrome. Concomitant use of diltiazem with beta-blockers or digitalis may result in additive effects on cardiac conduction

Adverse effects Headache, constipation, rash, nausea, flushing, edema, drowsiness, low blood pressure, and dizziness.

Indications Atrial Fibrillation with RVR, Paroxysmal Supraventricular Tachycardia

Dosing Per Protocol
Diphenhydramine

Class Antihistamine, Ethanolamine, Anticholinergic

Action Diphenhydramine blocks the effects of Histamine (H1 histamine) on the H1 receptor site through a competitive competition for the peripheral H1 site. When diphenhydramine is bound the H1 site cannot be stimulated preventing the effects of histamines (swelling, etc…). As an H1 blocker diphenhydramine blocks the effects of H1 on its receptor in the cortex as well this causes a change in the cortex neural potassium channels causing neurons in the cortex to have a higher threshold to depolarize. This results in an increase in sedation as a result of the H1 block. As an antihistamine, diphenhydramine one of the most effective antihistamines.

Pharmacokinetics Onset of 15m IV, peak 1-4h, ½ life 2-10h.

Contraindications Known allergy.

Adverse effects Potent anticholinergic agent. Mydriasis, Photophobia, ataxia, tachycardia

Indications Hives/Rash or Adult dystonic reaction

Dosing Per Protocols
Dopamine

Class .. Sympathomimetic, Catecholamine

Action Naturally occurring hormone and preceptor to Norepinephrine. This catecholamine has different effects at different doses due to the sensitivity of receptors at different sites being related to the concentration of dopamine present. At low doses (2-5 mcg/kg/min) dopamine increases the perfusion of the mesenteric arteries and the kidneys. Low doses can be used to try and perfuse an ischemic bowel or a failing kidney. Has a direct action on alpha and beta-adrenergic receptors. As doses are increased (5-10 mcg/kg/min), beta receptors are stimulated increasing force of contraction as well as heart rate and conduction. As dopamine becomes more concentrated (10-20 mcg/kg/min) the less sensitive peripheral alpha receptors become activated this causes a increase in vascular constriction that increases as the drug becomes more concentrated until at 20 mcg/kg/min the effects are mainly on the peripheral vasculature.

Pharmacokinetics Onset <5m, duration <10m, ½ life 2m.

Contraindications Pheochromocytoma (adrenal tumors), tachydysrhythmias, HTN

Adverse effects Tachydysrhythmias, VF, VT, AMI, N/V, HA.

Indications Hypotension unresponsive to fluid therapy

Dosing Per Protocols
Epinephrine

Class Sympathomimetic

Action Naturally occurring catecholamine obtained from animal adrenal glands. Acts on alpha and beta adrenergic receptors. The most potent alpha agonist. Beta1: Strengthens myocardial contraction, increase sys BP (may decrease dia BP), increases HR and cardiac output. Beta2: Dilates bronchial smooth muscle and inhibits mucous secretion. Alpha: Constricts bronchiole arterioles, inhibits histamine release, constricts arterioles in the skin, mucous membranes, and kidneys but dilates those in the skeletal muscle. Action is through a natural hormonal mechanism.

Pharmacokinetics Onset<2m IV, 3-10m SQ. Peak 5m IV, 20m SQ. Duration 5-10m IV, 20-30m SQ.

Contraindications Tachydyrsyrhythmias, coronary artery disease.

Adverse effects HA, N/V, tachydyrsyrhythmias, AMI, diaphoresis, anxiety, palpitations.

Indications Allergic Reaction/Anaphylaxis, Reactive Airway Disease, PEDI Bradycardia, Cardiac Resuscitation

Dosing Per Protocols
Etomidate

Class Anesthetic, sedative-hypnotic

Action Short-acting hypnotic, which appears to have gamma-aminobutyric acid (GABA)-like effects. Unlike the barbiturates, Etomidate reduces subcortical inhibition at the onset of hypnosis while inducing neocortical sleep.

Pharmacokinetics Rapidly metabolized in the liver, primarily by hydrolysis. Elimination half-life about 75 min. Approximately 75% eliminated in the urine within 24 h. Onset usually within 1 minute.

Contraindications Known hypersensitivity

Precaution Monitor renal function in elderly patients. Monitor plasma cortisol and aldosterone levels during induction.

Adverse effects Nausea and/or vomiting, alterations in respiratory patterns, alterations in hemodynamic status, alterations in heart rate.

Indications Etomidate may blunt rise in intracranial pressure during intubation and may also be used to provide short duration sedation – hypnotic effect for situations such as automobile extrication.

Dosing Per Protocol
Fentanyl Citrate

Class Narcotic analgesic

Action The principal actions of therapeutic value are analgesia and sedation.

Pharmacokinetics Opioid (narcotic, CNS-acting) analgesics are derivatives of opium. These drugs modify the perception of pain and provide a sense of euphoria by binding to specific opiate receptors throughout the central nervous system. Many of the characteristics of particular opioids relate to the receptor to which they bind. Fentanyl is classified as a full agonists and binds to mu receptor sites, blocks pain impulses, and produces maximum pain control. Onset immediate, peak 3-5m, duration 30-60m.

Contraindications Fentanyl is not indicated for MAOI use, asthma, myasthenia gravis, evidence of hypoperfusion.

Adverse effects Fentanyl may cause muscle rigidity, particularly involving the muscles of respiration. In addition, skeletal muscle movements of various groups in the extremities, neck and external eye have been reported during induction of anesthesia with fentanyl; these reported movements have, on rare occasions, been strong enough to pose patient management problems. This effect is related to the dose and speed of injection and its incidence can be reduced by slower administration and lower doses titrated to effect. As with other narcotic analgesics, the most common serious adverse reactions reported to occur with fentanyl are respiratory depression, apnea, rigidity, and bradycardia; if these remain untreated, respiratory arrest, circulatory depression or cardiac arrest could occur. Other adverse reactions that have been reported are hypertension, hypotension, dizziness, blurred vision, nausea, emesis, laryngospasm, and diaphoresis.

Indications Acute pain management

Dosing Per Protocols
Furosemide

Class Loop Diuretic

Action Rapid-acting sulfonamide loop diuretic with antihypertensive properties. Decreases renal vascular resistance and increases renal perfusion. Inhibits resorption of Na+ and Cl- in the Loop of Henle and also in the proximal and distal tubules. Fluid then follows the Na+ and is extracted with the Na+. Furosemide is extremely potent when a patient receives it for the first time. Furosemide is not potassium sparing and patients on Lasix should be on a Potassium supplement or hypokalemia may result. Also acts as a venous dilator, reducing preload, therefore cardiac workload.

Pharmacokinetics Onset 5-10m, peak diuresis effect 20-60m, duration 6h, ½ life 30m.

Contraindications Dehydration, hypokalemia, hepatic coma, SBP<100.

Adverse effects Hypokalemia, hypotension, dehydration, urinary urgency.

Indications CHF/Pulmonary Edema and Crush > 4 hrs (Adult only)

Dosing Per Protocols
Glucagon

ClassHormone

ActionCauses a breakdown of stored blood glycogen to glucose and inhibits glycogen synthesis. Glucagons acts by binding to glucagon receptor sites and stimulating a secondary messenger through the increase of adenylate cyclase. Beta stimulation causes an increase in the adenylate cyclase. Therefore glucagon has been known to have beta like effects just as Beta drugs such as Epinephrine are known to stimulate Glycogenolysis in the liver.

PharmacokineticsOnset 5-20m, peak 30m, duration 1-1.5h. ½ life30m.

ContraindicationsNot efficacious in poorly nourished individuals as they have no glycogen stores.

Adverse effectsN/V, HA

Indications..................Hypoglycemia < 50 if unable to obtain IV access for D50

DosingPer Protocols
Haloperidol

Class Antipsychotic

Action The precise mechanism of action has not been clearly established.

Pharmacokinetics This drug is known to be substantially excreted by the kidney.

Contraindications Severe toxic central nervous system depression or comatose states from any cause and in individuals who are hypersensitive to this drug or have Parkinson's disease.

Precaution Elderly Patients with Dementia-Related Psychosis.

Adverse effects Tachycardia, hypotension, and hypertension have been reported. QT prolongation and/or ventricular arrhythmias have also been reported, in addition to ECG pattern changes compatible with the polymorphous configuration of torsade de pointes, and may occur more frequently with high doses and in predisposed patients. Symptoms of dystonia, prolonged abnormal contractions of muscle groups, may occur in susceptible individuals during the first few days of treatment. Dystonic symptoms include: spasm of the neck muscles, sometimes progressing to tightness of the throat, swallowing difficulty, difficulty breathing, and/or protrusion of the tongue. While these symptoms can occur at low doses, they occur more frequently and with greater severity with high potency and at higher doses of first generation antipsychotic drugs. An elevated risk of acute dystonia is observed in males and younger age groups. The risk of toxic reactions of this drug may be greater in patients with impaired renal function.

Indications Haloperidol is used to treat certain mental/mood disorders (e.g., schizophrenia, schizoaffective disorders). It can also help prevent suicide in people who are likely to harm themselves. It also reduces aggression and the desire to hurt others. It can decrease negative thoughts and hallucinations. Haloperidol can also be used to treat uncontrolled movements and outbursts of words/sounds related to Tourettes disorder. Haloperidol is also used for severe behavior problems in hyperactive children when other treatments or medications have not worked. Haloperidol is a psychiatric medication (antipsychotic-type) that works by helping to restore the balance of certain natural substances in the brain (neurotransmitters).

Dosing Per Protocol
Ipratropium Bromide

Class Parasympatholytic Bronchodilator

Action Anticholinergic agent, chemically closely related to atropine and has the same actions as Atropine. Acts directly on the smooth muscle and decreases secretions. Reduces the vagally mediated reflex bronchospasm caused by inhaled irritants.

Pharmacokinetics 10% of inhaled dose reaches lower airway, 0.5% reaches systemic distribution. Peak 1.5-2h, duration 4-6h, ½ life 1.5-2h.

Contraindications Narrow-angle Glaucoma, Hypersensitivity to Atropine or allergy to soy products

Adverse effects Dry mouth, HA, cough, dries secretions

Indications................... Obstructive Airway Disease, Reactive Airway Disease

Dosing Per Protocols
Ketamine

Class .. Dissociative anesthetic

Action .. Ketamine is a Class III Phencyclidine (PCP) derivative that is rapid acting in producing a “dissociative” anesthesia in which the patient’s consciousness is detached from their nervous system. Due to its “dissociative” properties, Ketamine is a potent analgesic.

Pharmacokinetics The liver microsomal enzyme system metabolizes Ketamine. Peak plasma concentrations are reached within 1 minute intravenously and 5–15 minutes intramuscularly.

Contraindications Angina, pregnancy, CHF, symptomatic hyperthyroidism, known hypersensitivity to the drug.

Precaution Emergence reactions occur in approximately 12% of patients. The incidence is least in young patients (< 15 years of age) and the elderly (> 65 years of age). Emergence also occurs less frequently when given IM. Use with caution in patients with known cardiac disease. Monitor vital signs frequently in patients with hypertension.

Adverse effects An emergence reaction may occur near end of medication half-life, when patient is awakening, that may require Versed of 1-5 mg IV/IM/IO to calm patient.

Indications Induction of anesthesia for RSI procedures and control of the aggressive excited delirium patient.

Dosing Per Protocol
Lidocaine

Class Antidysrhythmic, Sodium channel blocker

Action Raises the threshold for ventricular contractions and lowers the
threshold for defibrillation and cardioversion. Suppresses automaticity in the His-purkinje system and by elevating the electrical stimulation threshold of ventricular contractions. This is accomplished by blocking the rapid influx of Na+ during the initial phase of depolarization. Typically shortens the action potential and the refractory period secondary to a blockade of sodium channels that usually (in procainamide’s blockade) continue to function normally through phase 2 of the action potential. Lidocaine functions well in hyperkalemic and acidotic states therefore it works well on ischemic tissues.

Pharmacokinetics Onset 3m, peak 5-7m, duration 10-20m, ½ life 1.5-2h.

Contraindications CHF, shock, use caution in the elderly.

Adverse effects Seizures, slurred speech, AMS

Indications Pain Management for IO Infusion, Cardiac Arrest and Post
Resuscitation Care

Dosing Per Protocols
Magnesium Sulfate

Class Electrolyte

Action Molecularly Mg+ is very similar to Ca as it has the same electron valence. Because of this it chemically very similarly to Ca+ and in some reactions in the body. Ca+ is significantly larger than Mg+ therefore Mg+ does not adequately replace it in cases that are not purely chemical. Because of these qualities Mg+ can prevent Ca+ from binding to Troponin and prevent muscles from contracting as described in the action for “Calcium Gluconate”. Because of its extremely positive charge it also blocks neuromuscular transmission by changing the electric potentials threshold.

Pharmacokinetics Onset immediate, duration 30m

Contraindications Renal disease, AV block, previous myocardial damage.

Adverse effects Hypotension, asystole, cardiac arrest, respiratory/CNS depression, flushing, sweating.

Indications.................. Obstetrical Emergencies/ Seizures (adult only), Reactive Airway Disease, Toxic Exposure (Hydrofluoric Acid), Pulseless Arrest, Tachycardia w/ pulse (adults only).

Dosing Per Protocols
Methylprednisolone

Class Glucocorticosteroid

Action Adrenal Corticosteroid with fewer sodium and water retention effects than hydrocortisone. Methylprednisolone alters the body’s immune response. Swelling is reduced because it prevents the white blood cells traveling to the area.

Pharmacokinetics ½ life of 2.5-3.5h.

Contraindications None for anaphylaxis.

Adverse effects Peptic ulcer, hyperglycemia, hypokalemia, impaired ability to fight infection, in the prolonged use the side effects are so numerous they are the subject of several books.

Indications Allergic Reaction/Anaphylaxis, Reactive Airway Disease

Dosing Per Protocols
Midazolam

Class Sedative, Benzodiazepine

Action As a Benzodiazepine this drug functions on GABA similarly to the action of “Diazepam”. Midazolam is a short-acting muscle-relaxant, anticonvulsant, in addition to these effects Midazolam also has anterograde amnestic effects, it is therefore preferred prior to cardioversion.

Pharmacokinetics Onset 3-5m IV, 6-14 IN, peak 20-60, duration < 2h, ½ life 1-4h.

Contraindications Shock, acute narrow glaucoma, coma

Adverse effects Resp. depression, hypotension, bradycardia, HA, N/V

Indications Seizures, Violent Patient/Chemical Sedation, Sedation for Electrical therapy and Induced Hypothermia

Dosing Per Protocols
Morphine Sulfate

Class Opiate, Narcotic analgesic

Action Binds to opiate receptors in the CNS and decreases the transmission of pain

Pharmacokinetics Onset 2-5 minutes, peak 20 minutes, duration 1 hour.

Contraindications Respiratory distress or depression, Head injury, Acute bronchospasm or asthma, Hypovolemic shock, Acute abdominal pain of unknown etiology (may be a relative contraindication; refer to OLMC)

Adverse effects CNS depression, Respiratory depression or arrest, Bronchospasm, Hypotension, Bradycardia, Nausea and vomiting

Indications.................... Pain relief from acute myocardial infarction, Pulmonary edema, Severe pain from etiologies such as isolated fractures, kidney stones, or burns

Dosing Per Protocols
Naloxone

Class Narcotic Antagonist

Action Competitive antagonist for opioids competing for opiate receptor sites in the brain. Displaces narcotic molecules from opiate receptors through this competition. Higher doses are needed to overcome overdoses of opiates that have a higher affinity for the opiate receptor in the brain.

Pharmacokinetics Onset <2m, peak <2m, duration 2-20m, ½ life 60-90m.

Contraindications Neonates with narcotic-addicted mothers.

Adverse effects Withdrawal symptoms.

Indications narcotic overdose

Dosing Per Protocols
Nitroglycerin

Class Nitrate

Action Potent vasodilator with antianginal, anti-ischemic, and antihypertensive effects. Relaxes vascular smooth muscle by an unknown mechanism. Decreases peripheral vascular resistance, preload, and afterload.

Pharmacokinetics Onset 1-3m SL, 30m transdermal. Peak 5-10m SL. Duration is 20-30m SL, 3-6h transdermal.

Contraindications Hypotension, hypovolemia, severe bradycardia or tachycardia, use of erectile dysfunction drugs within past 24hrs up to 48 hours depending on use of extended release medications.

Adverse effects Hypotension, HA, syncope, tachycardia.

Indications Chest Pain, CHF/Pulmonary Edema

Dosing Per Protocols
Ondansetron

Class Antiemetic, 5-HT3, receptor antagonist

Action Ondansetron is a selective 5-HT3 receptor antagonist. While its mechanism of action has not been fully characterized, Ondansetron is not a dopamine-receptor antagonist. Serotonin receptors of the 5-HT3 type are present both peripherally on vagal nerve terminals and centrally in the chemoreceptor trigger zone of the area postrema. It is not certain whether Ondansetron's antiemetic action is mediated centrally, peripherally, or in both sites. The released serotonin may stimulate the vagal afferents through the 5-HT3 receptors and initiate the vomiting reflex.

Pharmacokinetics Rapid onset, half-life 3-4 hours

Contraindications If the patient is sensitive to or has ever had an allergic reaction to ondansetron hydrochloride, do not give Zofran. If drugs similar to Zofran (for instance, Anzemet or Kytril) have caused a reaction, Zofran may cause one too. If your patient has phenylketonuria (an excess of the amino acid phenylalanine) Zofran also contains this substance.

Adverse effects Blurred vision or temporary blindness, fever, slow heart rate, trouble breathing, anxiety, agitation, shivering, feeling light-headed or fainting

Indications............... Nausea and/or Vomiting

Dosing Per Protocols
Oral Glucose
Dextrose 40%

Class Carbohydrate. Dextrose (aka. glucose) is one of the basic building blocks of all sugars. Glucose is a monomer and is therefore readily processed in the blood. Through glycolysis glucose is turned into pyruvate giving off a small amount of chemical energy (ATP). Pyruvate is further processed through the Citric Acid Cycle (Kreb’s Cycle) yielding even more energy (GTP, FADH2 and NADH) and CO2. The GTP, FADH2 and NADH are then converted into a large amount of ATP through the use of a specialized cell membrane and the ability of Oxygen to receive extra protons and carbon to form water and CO2.

Action Principal form of glucose used by the body readily absorbed via the digestive tract.

Pharmacokinetics Rapid absorption in bloodstream

Contraindications Patients that are unconscious or unable to control their airway, not recommended for patients < 2 years of age.

Adverse effects Airway compromise during administration

Indications Patients with blood glucose level < 50 with altered mentation and who can control their airway and are able to swallow.

Dosing Per Protocols
Otrivin (Afrin)

Class Decongestant (topical)

Action A direct-acting sympathomimetic amine. Xylometazoline acts on alpha-adrenergic receptors in the nasal mucosa to produce vasoconstriction, resulting in decreased blood flow and decreased nasal congestion.

Pharmacokinetics rapid onset, up to 10 hours duration

Contraindications known hypersensitivity to this Medication

Precaution Patients sensitive to other nasal decongestants may be sensitive to this medication also.

Adverse effects Coronary artery disease or Heart disease, including angina or hypertension (condition may be exacerbated due to drug-induced cardiovascular effects)

Indications Nasal preparation prior to Nasal Tracheal Intubation attempt

Dosing Per Clinical Procedure
Oxygen

Class.............................. Gas

Action Distributed by the vascular system and directly used by all tissues.

Contraindications None in the prehospital setting

Adverse effects None

Indications Chest Pain, Shortness of Breath, Hypoxemia of any cause, Respiratory emergencies, Cardiovascular emergencies, Neurologic diseases, Suspected carbon monoxide toxicity

Dosing Per Protocols
Rocuronium Bromide

Class Non-depolarizing neuromuscular blocker

Action Relaxation of skeletal muscles initiating paralysis

Pharmacokinetics Onset in 1 to 2 minutes, duration of 10 to 15 minutes. Eliminated primarily by the liver.

Contraindications Hypersensitivity (eg, anaphylaxis) to rocuronium or other neuromuscular blocking agents.

Adverse effects Prolonged paralysis

Indications For induction of paralysis to facilitate rapid sequence intubation and to facilitate induction of hypothermia.

Dosing Per Protocol
Sodium Bicarbonate

Class Electrolyte

Action Short-acting, potent, systemic antacid. Immediately raises the pH of blood plasma by buffering excess hydrogen ions. This occurs because the Na+ (sodium) and the HCO3- (bicarbonate ion) separate in solution. While separate the negative charge on the bicarbonate is able to accept (and will prefer over sodium) hydrogen ions. The HCO3- then becomes H2CO3 which the body will turn into water and CO2. In tricyclic overdoses the Na+ ion is important also in its use to attempt to overcome the sodium blockade that occurs.

Pharmacokinetics Onset immediate, duration 1-2h.

Contraindications None on an indicate condition.

Adverse effects Metabolic acidosis, hypokalemia, fluid overload.

Indications Overdose, Hyperkalemic Arrest, Neonatal Resuscitation (OLMC), Burns, Crush Injuries

Dosing Per Protocols
Sodium Nitrite

Class Nitrates and Nitrites

Action The mechanism of action may be by inducing low levels of methemoglobinemia. Another postulated mechanism is by acting through nitric oxide synthetase. Airway management and provision of supplemental oxygen increase efficacy.

Pharmacokinetics Sodium nitrite antagonizes acetylcholine, epinephrine, and histamine effects; sodium nitrite potentiates hypotensive effects and/or anticholinergic effects of tricyclic antidepressants, antihistamines, and meperidine and related CNS depressants; ethanol increases the toxicity of amyl nitrite.

Contraindications Relative Contraindications:
- Significant hypotension
- Methemoglobinemia >40%
- Carbon monoxide poisoning

Absolute Contraindications:
- Known Allergy to Medication

Adverse effects Cardiovascular: Tachycardia, syncope, cyanosis, hypotension (associated with rapid infusion), flushing
- Central nervous system: Dizziness, headache
- Gastrointestinal: Nausea, vomiting
- Miscellaneous: Methemoglobin formation

Indications Significant cyanide, cyanogenic compound, or sulfide poisoning

Dosing Per Protocols
Sodium Thiosulfate

Class Crystalline Salt

Action Sodium thiosulfate provides sulfane sulfur which is needed by the hepatic enzyme rhodanese to change cyanide into thicyanate that is then excreted in the urine. The availability of sulfane sulfur is a rate-limiting step for this reaction. Endogenous supplies of sulfane sulfur (mostly in sulfur-containing amino acids) are insufficient during cyanide or cyanogenic compound poisoning.

Pharmacokinetics When administered intravenously, it is distributed in the extracellular fluid and then rapidly excreted via the urine.

Contraindications Relative Contraindications:
An unprotected, at risk airway. This is because many patients will vomit and could aspirate.

Absolute Contraindications:
NONE

Adverse effects Cardiovascular: Hypotension
Central nervous system: Coma, CNS depression secondary to thiocyanate intoxication, psychosis, confusion
Dermatologic: Contact dermatitis
Local: Local irritation
Neuromuscular & skeletal: Weakness
Otic: Tinnitus

Indications Significant cyanide or cyanogenic compound poisoning

Dosing Per Protocol
Tetracaine

Classis a topical anesthetic prepared as a sterile aqueous ophthalmic solution.

ActionAfter topical application to the eye, local anesthetics penetrate to sensory nerve endings in the corneal tissue. These medications block both the initiation and conduction of nerve impulses by decreasing the neuronal membrane's permeability to sodium ions. This reversibly stabilizes the membrane and inhibits depolarization, resulting in the failure of a propagated action potential and subsequent conduction blockade.

ContraindicationsAllergic reaction to tetracaine, history of Plasma cholinesterase deficiency

PrecautionAlthough exceedingly rare with ophthalmic application of local anesthetics, it should be borne in mind that systemic toxicity (manifested by central nervous system stimulation followed by depression) may occur.

Adverse effectsCNS depression, Allergic reaction

Indicationsanesthetic used for eye procedures related to eye injury or contamination

DosingPer Protocol
Vecuronium Bromide

Class Non-depolarizing neuromuscular blocker

Action The relaxation of skeletal muscles which facilitates endotracheal intubation and mechanical ventilation.

Pharmacokinetics Binds to receptors and prevents acetylcholine (Ach) from stimulating receptors. It competes with Ach for nicotinic receptor binding sites. The blockade is competitive, hence muscle paralysis occurs gradually.

Contraindications None

Adverse effects Prolonged paralysis

Indications To facilitate invasive cooling procedure.

Dosing Per Protocol
Xylocaine Gel

Class anesthetic

Action stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby, effecting local anesthetic action. Local anesthetics of the amide type are thought to act within the sodium channels of the nerve membrane.

Pharmacokinetics After application local anesthesia is achieved within 5 minutes. Duration of anesthesia is approximately 20 - 30 minutes.

Contraindications Lidocaine HCl is contraindicated in patients with a known history of hypersensitivity to local anesthetics of the amide type.

Indications Nasal preparation prior to Nasal Tracheal Intubation attempt

Dosing Per Clinical Procedure